Künneth theorems for Vietoris–Rips homology

نویسندگان

چکیده

We prove a Kunneth theorem for the Vietoris-Rips homology and cohomology of semi-uniform space. then interpret this result graphs, where we show that holds graphs with respect to strong graph product. finish by computing torus endowed diferent structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intersection homology Künneth theorems

Cohen, Goresky and Ji showed that there is a Künneth theorem relating the intersection homology groups I H∗(X × Y ) to I H∗(X) and I H∗(Y ), provided that the perversity p̄ satisfies rather strict conditions. We consider biperversities and prove that there is a Künneth theorem relating I H∗(X × Y ) to I H∗(X) and I H∗(Y ) for all choices of p̄ and q̄. Furthermore, we prove that the Künneth theorem...

متن کامل

Localization Theorems in Topological Hochschild Homology and Topological Cyclic Homology

We construct localization cofiber sequences for the topological Hochschild homology (THH) and topological cyclic homology (TC) of spectral categories. Using a “global” construction of the THH and TC of a scheme in terms of the perfect complexes in a spectrally enriched version of the category of unbounded complexes, the sequences specialize to localization cofiber sequences associated to the in...

متن کامل

Chebotarev-type Theorems in Homology Classes

We describe how closed geodesics lying in a prescribed homology class on a negatively curved manifold split when lifted to a finite cover. This generalizes a result of Zelditch in the case of compact hyperbolic surfaces. 0. Introduction Given a compact manifold of negative curvature, there are geometric analogues of the Chebotarev Theorem in algebraic number theory due to Sunada [13] (cf. also ...

متن کامل

K-Homology, Assembly and Rigidity Theorems for Relative Eta Invariants

Nigel Higson and John Roe Abstract: We connect the assembly map in C∗-algebra K-theory to rigidity properties for relative eta invariants that have been investigated by Mathai, Keswani, Weinberger and others. We give a new and conceptual proof of Keswani’s theorem that whenever the C∗-algebra assembly map is an isomorphism, the relative eta invariants associated to the signature operator are ho...

متن کامل

ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS

The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by  Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica Hungarica

سال: 2022

ISSN: ['0001-5954', '0236-5294', '1588-2632']

DOI: https://doi.org/10.1007/s10474-022-01220-7